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Abstract

Three methods are presented to determine the motion of a two-dimensional finite elastic plate floating on the water

surface, which is released from rest and allowed to evolve freely. The first method is based on a generalized

eigenfunction expansion and it is valid for all water depths. The second method is based on an integral equation derived

from the Fourier transform, and it is valid for all water depths, although computations are made only for water of

infinite depth. These two methods are both based on the frequency-domain solution—however no obvious connection

exists between the two methods. The third method is valid only for shallow water, and it expresses the solution as the

sum over decaying modes. We present a new derivation of the integral equation for a floating plate based on the Fourier

transform of the equations of motion in the time domain. The solution obtained by each method is compared in the

appropriate regime, and excellent agreement is found, thereby providing benchmark solutions. We also investigate the

regime of validity of the infinite and shallow-depth solutions, and show that both give good results for a quite wide

range of depths.
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1. Introduction

The floating elastic plate is a very natural problem to consider when attempting to understand hydroelastic motions.

As well as being a simple model for practical structures such as a very large floating structure (VLFS), the floating

elastic plate serves as a simple model for more complicated and realistic geometries. For this reason the floating elastic

plate is amongst the best-studied problems in hydroelasticity, and it has been used to model floating breakwaters

(Stoker, 1957), ice floes (Squire et al., 1995; Squire, 2007) and very large floating structures (Kashiwagi, 2000a;

Watanabe et al., 2004).

The single-frequency (time harmonic) response for a floating elastic plate in shallow water was presented in Stoker

(1957) and the solution for finite depth was given in Meylan and Squire (1994) and Newman (1994) for two dimensions.

A detailed discussion of the three-dimensional problem can be found in Squire (2007). The time-dependent problem is

much more challenging, especially for the case of a plate released from rest which is allowed to evolve freely. A solution
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for the case of shallow water has been presented in Meylan (2002) using a generalized eigenfunction expansion and by

Lax–Phillips scattering theory, the latter of which provides the solution as a sum over modes which oscillate and decay.

A solution for shallow water was also given in Sturova (2002), by solving a differential equation governing the temporal

evolution of the free modes of the plate. Kashiwagi (2000b, 2004) used the integral equation method to carry out a

numerical simulation of the transient responses of a rectangular VLFS floating on deep water, during landing and take-

off by an aeroplane. Recently Sturova (2006) has developed this integral equation method for the time-dependent

problem, for a floating elastic plate on water of infinite depth. But no derivation of the integral equations for a floating

elastic plate was given in those papers, and we present such a derivation here. Recently Hazard and Meylan (2007) have

extended the generalized eigenfunction method to water of finite depth. A solution to the problem by a finite-element

method is given in Qui (2007), and the solution for a circular plate on shallow water is given in Sturova (2003). The two-

dimensional unsteady problem of the hydroelastic behaviour of a plate floating on water of infinite depth was solved in

Korobkin (2000), but gravity effects were neglected in determining the maximum of both the plate deflection and

bending stresses in the plate.

In this paper, we present the time-dependent solution to the floating elastic plate released from rest by three methods.

The first method is based on a generalized eigenfunction expansion and it is valid for water of finite depth. The second

method is based on an integral equation which was given by Ogilvie (1964) for a rigid body, although his derivation is

different from the derivation we present here which based on the Fourier transform. This method is sometime called

‘‘the memory effect equation’’. The second method is valid for finite depth, but the numerical solution is presented only

for infinite depth. The third solution method is for shallow water, and it expresses the solution as a sum of modes.

The first two solutions require the solution in the frequency domain. We present numerical solutions which show good

agreement between the three numerical methods (in the appropriate depths), thus providing benchmark solutions. We

also investigate the range of depths for which both the infinite-depth and shallow-water assumptions are valid.
2. Statement of the problem and mathematical formulations

2.1. Governing equations

The plate is infinite in the y direction, so that only the x and z directions are considered. The x direction is horizontal,

the positive z axis points vertically up, and the plate covers the region �bpxpb: The water is of uniform depth h.

The amplitudes are assumed small enough that the linear theory is appropriate, and the plate is sufficiently thin that the

shallow-draft approximation may be made (Watanabe et al., 2004). The mathematical description of this problem

follows from Stoker (1957). The velocity potential F satisfies

DF ¼ 0; �hozo0, (1)

@zF ¼ 0; z ¼ �h. (2)

The kinematic condition is

@tx ¼ @zF; z ¼ 0, (3)

where x is the displacement of the water surface or the plate (from the shallow-draft approximation). The dynamic

condition, obtained by matching the pressure at the free surface, is

� rgx� r@tF ¼ 0; xeð�b; bÞ; z ¼ 0, (4)

� rgx� r@tF ¼ D@4xxþ r0d@2t x; x 2 ð�b; bÞ; z ¼ 0, (5)

where D is the bending rigidity of the plate per unit length, r is the density of water, r0 is the density of the plate, d is the

plate thickness and g is the acceleration due to gravity. At the ends of the plate the free-edge boundary conditions

lim
x#�b

@2xx ¼ lim
x"b

@2xx ¼ lim
x#�b

@3xx ¼ lim
x"b

@3xx ¼ 0 (6)

are applied.

Nondimensional variables are now introduced, using a length parameter L for the space variables, and
ffiffiffiffiffiffiffiffi
L=g

p
for the

time variable. We leave the choice of the length parameter arbitrary, since there are two natural length parameters, the

water depth and the characteristic length ðD=rgÞ1=4. It also means that we can present results in our nondimensional

variables, in which the plate properties are kept constant and the water depth is varied. Hence the nondimensional

surface displacement and velocity potential satisfy the following coupled equations, where the overbar denotes
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nondimensional variables,

D̄F̄ ¼ 0; �h̄oz̄o0; @z̄F̄ ¼ 0; z̄ ¼ �h̄, (7a,b)

@t̄x̄ ¼ @z̄F̄; z̄ ¼ 0, (7c)

�x̄� @t̄F̄ ¼ 0; x̄eð�b̄; b̄Þ; z̄ ¼ 0; �x̄� @t̄F̄ ¼ b@4x̄x̄þ g@2t̄ x̄; x̄ 2 ð�b̄; b̄Þ; z̄ ¼ 0, (7d,e)

plus the free-edge boundary conditions

lim
x̄#�b̄

@2x̄x̄ ¼ lim
x̄"b̄

@2x̄x̄ ¼ lim
x̄#�b̄

@3x̄x̄ ¼ lim
x̄"b̄

@3x̄x̄ ¼ 0, (8)

where b ¼ D=ðrgL4Þ and g ¼ r0d=ðrLÞ. For clarity the overbar is dropped from now on. Eqs. (7a)–(7e) are subject to

the following initial conditions:

xðx; 0Þ ¼ x0ðxÞ and @txðx; 0Þ ¼ 0; x 2 ð�b; bÞ, (9)

as well as the condition that the initial fluid potential is at rest, i.e. Fjt¼0 ¼ 0. The problem of more general initial

conditions is discussed in Hazard and Meylan (2007).

2.2. Expansion in modes

We expand the plate motion in the free (dry) modes which satisfy

@4xwn ¼ l4nwn, (10)

and the free-edge conditions

lim
x#�b

@2xwn ¼ lim
x"b

@2xwn ¼ lim
x#�b

@3xwn ¼ lim
x"b

@3xwn ¼ 0, (11)

where the eigenvalues ln ðnX2Þ denote the positive real roots of the equation

tanðlnbÞ þ ð�1Þn tanhðlnbÞ ¼ 0, (12)

and l0 ¼ l1 ¼ 0. The modes are given by

w0 ¼
1ffiffiffiffiffi
2b
p , (13)

w1 ¼ x

ffiffiffiffiffiffiffi
3

2b3

r
, (14)

w2n ¼
1ffiffiffiffiffi
2b
p

cosðl2nxÞ

cosðl2nbÞ
þ

coshðl2nxÞ

coshðl2nbÞ

� �
, (15)

and

w2nþ1 ¼
1ffiffiffiffiffi
2b
p

sinðl2nþ1xÞ

sinðl2nþ1bÞ
þ

sinhðl2nþ1xÞ

sinhðl2nþ1bÞ

� �
. (16)

The modes are normalized, i.e.Z b

�b

wmðxÞwnðxÞdx ¼ dmn, (17)

where dmn is the Kronecker symbol. More details can be found in Sturova (2002). We expand the plate displacement in

the modes as

xðx; tÞ ¼
X1
n¼0

LnðtÞwnðxÞ; x 2 ð�b; bÞ, (18)

and substitute this expansion into (7a)–(7e), to obtain

DF ¼ 0; �hozo0; @zF ¼ 0; z ¼ �h, (19a,b)
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� @2t F ¼ @zF; xeð�b; bÞ; z ¼ 0, (19c)X1
n¼0

@tLnwn ¼ @zF; x 2 ð�b; bÞ; z ¼ 0, (19d)

X1
n¼0

Lnð1þ bl4nÞwn þ g
X1
n¼0

@2t Lnwn ¼ �@tF; x 2 ð�b; bÞ; z ¼ 0. (19e)

The initial conditions are

x0 ¼
X1
n¼0

Lnð0Þwn; x 2 ð�b; bÞ, (20)

so that

Lnð0Þ ¼

Z b

�b

x0ðxÞwnðxÞ dx (21)

as well as the condition that @tLnðtÞjt¼0 ¼ 0 and that the fluid is initially at rest.
3. Single-frequency solution

Both methods we consider here rely on solving the single-frequency solution. For the floating plate this can be solved

by a number of methods, including a Green’s function method (Meylan and Squire, 1994; Newman, 1994) and an

eigenfunction expansion (Hazard and Meylan, 2007; Kohout et al., 2007). We present here the solution as an expansion

in modes, without giving details about finding the numerical solution [which can be found in Newman (1994); Sturova

(2006)]. The single-frequency equations are based on assuming that all quantities are proportional to eiot, so that

Fðx; tÞ ¼ fðx;oÞ eiot; LnðtÞ ¼ anðoÞ eiot and xðx; tÞ ¼ zðx;oÞ eiot, (22)

where x ¼ ðx; zÞ. Note that sometimes we will not write the dependence on o explicitly. Under these assumptions, Eqs.

(19a)–(19e) become

Df ¼ 0; �hozo0; @zf ¼ 0; z ¼ �h, (23a,b)

o2f ¼ @zf; xeð�b; bÞ; z ¼ 0, (23c)

io
X1
n¼0

anwn ¼ @zf; x 2 ð�b; bÞ; z ¼ 0, (23d)

X1
n¼0

anð1þ bl4nÞwn � o2g
X1
n¼0

anwn ¼ �iof; x 2 ð�b; bÞ; z ¼ 0. (23e)

We solve for the potential (and displacement) as the sum of the diffracted and radiation potentials in the standard

way, as for a rigid body. We begin with the diffraction potential fðdÞ which satisfies the following equations:

DfðdÞ ¼ 0; �hozo0, (24a)

@zf
ðdÞ
¼ 0; z ¼ �h, (24b)

@zf
ðdÞ
¼ o2fðdÞ; xeð�b; bÞ; z ¼ 0, (24c)

@zf
ðdÞ
¼ 0; x 2 ð�b; bÞ; z ¼ 0. (24d)

Furthermore, fðdÞ satisfies the radiation condition

@

@x
ðfðdÞ � fIn

k Þ � ikðfðdÞ � fIn
k Þ ¼ 0 as x!�1, (25)

where k is the wavenumber, which is the positive real solution of the dispersion equation

k tanhðkhÞ ¼ o2, (26)
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and fIn
k is the incident wave given by

fIn
k ¼

io
k sinh kh

cosh kðzþ hÞ eikkx (27)

(which has unit amplitude in displacement) and k is either 1 for a wave travelling towards negative infinity or �1 for a

wave travelling towards positive infinity (we will need both these solutions). We now consider the radiation potentials

fðnÞ, which satisfy the following equations:

DfðnÞ ¼ 0; �hozo0, (28a)

@zf
ðnÞ
¼ 0; z ¼ �h, (28b)

@zf
ðnÞ
¼ o2fðnÞ; xeð�b; bÞ; z ¼ 0 (28c)

@zf
ðnÞ
¼ iown; x 2 ð�b; bÞ; z ¼ 0. (28d)

The radiation condition for the radiation potential is

@fðnÞ

@x
� ikfðnÞ ¼ 0 as x!�1. (29)

The method used to solve these equations for deep water is described in Sturova (2006), and for finite depth in

Newman (1994). Therefore we find the potential as

f ¼ fðdÞk þ
X1
n¼0

an;kf
ðnÞ, (30)

so that

X1
n¼0

ð1þ bl4n � o2gÞan;kwn ¼ �iofðdÞk � io
X1
n¼0

an;kfðnÞ. (31)

If we multiply by wm and take an inner product over the plate we obtain

ð1þ bl4n � o2gÞan;k ¼ �io
Z b

�b

fðdÞk wn dxþ
X1
m¼0

ðo2amnðoÞ � iobmnðoÞÞam;k, (32)

where the real functions amnðoÞ and bmnðoÞ are given by

o2amnðoÞ � iobmnðoÞ ¼ �io
Z b

�b

fðmÞwn dx, (33)

and they are referred to as the added mass and damping coefficients, respectively. Eq. (32) is solved by truncating the

number of modes. The expression for the displacement is

zkðx;oÞ ¼

P1
n¼0

an;kðoÞwnðxÞ; x 2 ð�b; bÞ;

�io fðdÞk ðx;oÞjz¼0 þ
P1
n¼0

an;kf
ðnÞ
ðx;oÞjz¼0

� �
; xeð�b; bÞ:

8>>><
>>>:

(34)
4. Time domain solution by a spectral expansion

We briefly summarize the results of Hazard and Meylan (2007). The spectral solution consists of writing the

equations of motion in the time domain (7a)–(7e) as

@2t xþ @nHx ¼ 0, (35)

where @nH is the Dirichlet-to-Neumann map of x to @nC at the surface, and C satisfies

DC ¼ 0; �hozo0, (36a)

@nC ¼ 0; z ¼ �h, (36b)
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C ¼ x; xeð�b; bÞ; z ¼ 0, (36c)

C� g@nC ¼ b@4xxþ x; x 2 ð�b; bÞ; z ¼ 0. (36d)

We also require that x satisfies the free-edge conditions. The operator @nH is positive and self-adjoint in the Hilbert

space H, with inner product

hx; x0iH ¼ hx; x
0
iR þ bh@2xx; @

2
xx
0
iP. (37)

The eigenfunctions of @nH are the single-frequency solutions zðx;oÞ given by (34), and the eigenvalue is o2. The key

property is that they normalize as

hzkðx;oÞ; zk0 ðx;o
0ÞiH ¼ 2p

do
dk

dkk0d o� o0ð Þ. (38)

This property allows us to construct the spectral expansion of the solution, which is given by

zðx; tÞ ¼
1

2p

Z
Rþ

X
k¼�1

cosðotÞ hx0; zkiHzk
dk

do
do. (39)

Eq. (39) was the one used in Hazard and Meylan (2007). We want to obtain an expression in terms of the modes of

the plate, and we therefore substitute the expression for the eigenfunctions (34) into (39) and consider the evolution of
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Fig. 1. Evolution of the plate with initial condition given by Eq. (63) with b ¼ g ¼ 0:005 and b ¼ 1. The water depth is infinite and

h ¼ 16. The solution for the solid curve is the finite depth theory and the dashed curve is the infinite water depth theory.
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each mode separately, to obtain

anðtÞ ¼
1

2p

Z
Rþ

X
k¼�1

cosðotÞ hx0; zkiHan;kðoÞ
dk

do
do. (40)

We substitute the expansion for the initial conditions (20) into the inner products, and obtain

hx0; zkiH ¼
X1
m¼0

ð1þ bl4mÞLmð0ÞamðoÞ. (41)

Therefore

anðtÞ ¼
1

2p

Z
Rþ

X
k¼�1

cosðotÞ
X1
m¼0

ð1þ bl4mÞLmð0ÞamðoÞ

 !
anðoÞ

dk

do
do. (42)

Eq. (42) is a generalized eigenfunction expansion for the plate motion, written in terms of the modes of vibration.
5. Fourier transform solution

We can solve the time-dependent equations by taking the one-sided Fourier transform (equivalent to the Laplace

transform). This equation can then be transformed to give a derivation of the integral equation which was first given by
Fig. 2. As in Fig. 1, except that the initial condition is given by Eq. (64).
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Ogilvie (1964) for a rigid body. If we take the one-sided Fourier transform, defined by

f̂ ðsÞ ¼

Z 1
0

eistf ðtÞdt and f ðtÞ ¼
1

2p

Z 1
�1

e�istf̂ ðsÞds (43)

of Eqs. (19a)–(19e), we obtain

DF̂ ¼ 0; �hozo0; @zF̂ ¼ 0; z ¼ �h, (44a,b)

s2F̂ ¼ @zF̂; xeð�b; bÞ; z ¼ 0, (44c)

is
X1
n¼0

L̂nwn �
X1
n¼0

Lnð0Þwn ¼ @zF̂; z ¼ 0, (44d)

X1
n¼0

L̂nð1þ bl4nÞwn � s2g
X1
n¼0

L̂nwn � isg
X1
n¼0

Lnð0Þwn ¼ �isF̂; x 2 ð�b; bÞ; z ¼ 0, (44e)

where the hat denotes the Fourier/Laplace transform. We have assumed that the only initial condition is due to the

plate displacement and the fluid is at rest.

Eqs. (44a)–(44d) can be solved using the solution for the radiation Eqs. (28a)–(29). This gives us

F̂ ¼
X1
n¼0

ðL̂n � Lnð0Þ=isÞfðnÞ, (45)
Fig. 3. As in Fig. 1, except that the finite water depth is h ¼ 8.
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and if we substitute this into Eq. (44e) and multiply by wm and take an inner product over the plate the solution for L̂
becomes

ð1þ bl4n � s2gÞL̂n � isgLnð0Þ ¼
X1
m¼0

ðs2amn � isbmnÞðL̂m � Lmð0Þ=isÞ. (46)

The solution to Eq. (46) was calculated numerically in Meylan et al. (2004).
5.1. Memory effect equations of motion

We can write Eq. (46) as

ð1þ bl4nÞL̂n þ
X1
m¼0

½ðgdmn þ amnð1ÞÞð�s2L̂m � isLmð0ÞÞ þ ððamn � amnð1ÞÞ þ bmn=isÞð�s2L̂m � isLmð0ÞÞ� ¼ 0, (47)

where

amnð1Þ ¼ lim
o!1

amnðoÞ, (48)

and the reason for its inclusion will be shown shortly. We now introduce the function

LmnðtÞ ¼
2

p

Z 1
0

bmnðoÞ
o

sinðotÞdo (49)
Fig. 4. As in Fig. 1, except that the finite water depth is h ¼ 4.
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whose Fourier transform is given by

L̂mn ¼ ðamnðsÞ � amnð1ÞÞ þ bmnðsÞ=is, (50)

from Mei (1989, eq. (11.21)). Note that this result is connected with the Kramers–Krönig relations. Therefore

X1
m¼0

½ðgdmn þ amnð1ÞÞð�s2L̂m � isLmð0ÞÞ þ L̂mnð�s2L̂m � isLmð0ÞÞ� þ ð1þ bl4nÞL̂n ¼ 0, (51)

and if we take the inverse Fourier transform we obtain

X1
m¼0

ðgdmn þ amnð1ÞÞ@
2
t Lm þ

Z t

0

@2tLmðtÞLmnðt� tÞdt
� �

þ ð1þ bl4nÞLn ¼ 0. (52)

This is the equation which was obtained by Cummins (1962) although the method to calculate Lmn was given later by

Ogilvie (1964). Since we have assumed that the initial plate velocity is zero so that @tLmð0Þ ¼ 0, we can use integration

by parts to transform the equation to

X1
m¼0

ðgdmn þ amnð1ÞÞ@
2
t Lm þ

Z t

0

@tLmðtÞKmnðt� tÞdt
� �

þ ð1þ bl4nÞLn ¼ 0, (53)
Fig. 5. As in Fig. 1, except that the finite water depth is h ¼ 2.
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where

KmnðtÞ ¼
2

p

Z 1
0

bmnðoÞ cosðotÞdo. (54)

Eq. (53) is the one used in Sturova (2006) and in the calculations presented in our results section.

Two expressions (42) and (53) solve the same problem, and we will see that they give the same solution numerically.

However, while some similarities exist between the two expressions, no way to connect the two formulas is known to the

authors, and finding such a connection remains an interesting open question.
6. Shallow water

The equations are considerably simplified under the assumption of shallow water. The solution method presented

here is based on Sturova (2002), and an alternative approach based on the generalized eigenfunction expansion and also

Lax–Philips scattering can be found in Meylan (2002). The equation takes the form

@tx ¼ �h@2xF, (55a)

� x� @tF ¼ 0; xeð�b; bÞ, (55b)

� x� @tF ¼ b@4xxþ g@2t x; x 2 ð�b; bÞ, (55c)
Fig. 6. As in Fig. 1, except that the water depth is h ¼ 0:02 and the dashed curve is the shallow-depth solution.
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where the potential is now only a function of x and t (see Sturova, 2002 for details). The free-edge boundary conditions

are exactly as before (8), as are the initial conditions (9). If we substitute the expansion in modes (18) into Eq. (55c),

multiply by wmðxÞ, and integrate from �b to b, we obtain the set of ordinary differential equations

g@2t Lm þ ½1þ bl4m�Lm þ f mðtÞ ¼ 0, (56)

where

f mðtÞ ¼

Z b

�b

@tFðx; tÞwmðxÞ dx. (57)

A solution for Fðx; tÞ is sought in the form

Fðx; tÞ ¼ �
1

h

X1
n¼0

@tLnðtÞCnðxÞ þ qðx; tÞ

" #
, (58)

where the functions FnðxÞ satisfy the equation

@2xCnðxÞ ¼ wnðxÞ. (59)

The function q is to be determined. According to Eq. (55a) the function q has the form qðx; tÞ ¼ xuðtÞ þ vðtÞ. The

functions uðtÞ and vðtÞ are determined from the conditions of continuity of pressure and mass flow at x ¼ �b:
Fig. 7. As in Fig. 6, except that the initial condition is given by Eq. (64).
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The final set of differential equations has the form

X1
n¼0

@2t Ln gdmn �
1

h
Cmn þ

b2

2h
dm0 þ

1

3
dm1

� �� �
þ

bffiffiffi
h
p dm0@tL0 þ

1

2
dm1@tL1

� �
þ Lmð1þ bl4mÞ þ dm1

ffiffiffiffiffi
2b

3h

r
u ¼ 0,

(60a)

@tuþ
1

2
ffiffiffi
2
p

ffiffiffi
b

3

r
@2t L1 þ

ffiffiffiffiffi
3h

b

r
@tL1

 !
þ

ffiffiffi
h
p

b
u ¼ 0, (60b)

where

Cmn ¼

Z b

�b

wmðxÞCnðxÞ dx. (61)

The analytical expressions for Cmn are given in Sturova (2002). This set of differential equations falls into two

independent sets. The first set includes only the amplitude functions L2kðtÞ (even modes), whereas the second set

includes the amplitude functions L2kþ1ðtÞ (odd modes) and the function uðtÞ.

We can write (60a) and (60b) in the form

d~X
dt
¼M~X, (62)
Fig. 8. As in Fig. 6, except that the depth is h ¼ 0:04.
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where M is a matrix and ~X ¼ ðu;L0;L1; . . .Þ. We can therefore solve (60a) and (60b) by finding the eigenvalues and

eigenvectors ofM. An alternative method to find these eigenvalues using Lax–Philips scattering can be found in Meylan

(2002), but this is not discussed here.
7. Numerical results

We present a series of benchmark calculations for the motion of an elastic floating plate released from rest, in the

time-domain. By comparing the results from two different methods we can establish a high degree of confidence that

the solution presented is correct. We also investigate the effect of depth of the motion, by comparing the solutions for

shallow and infinite depth with the finite-depth solution.

We consider two initial displacements. The first is a symmetric displacement given by

x0ðxÞ ¼ 1
2
ð1þ cosðpx=bÞÞ, (63)

and the second is a nonsymmetric displacement given by

x0ðxÞ ¼
0; �boxo0;
1
2
ð1þ cosð2pðx=b� 1=2ÞÞÞ; 0oxob:

(
(64)

In both cases the initial plate velocity is zero. We fix the plate parameters to be b ¼ g ¼ 0:005 and b ¼ 1, and we show

the plate displacement for t ¼ 0; 0:5; 1; 1:5; 2; 2:5; 3; 3:5; 4. In all cases we use the first 20 modes. Fig. 1 shows the

evolution of the plate for symmetric displacement (63) and Fig. 2 shows the displacement for the nonsymmetric initial
Fig. 9. As in Fig. 6, except that the depth is h ¼ 0:1.
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displacement (64). The finite depth solution is calculated with depth h ¼ 16, which is sufficiently large that the finite and

infinite depth solutions agree. The key result is that the two solution methods are identical. The complex response of the

plate is apparent, and it is clear that the plate has almost come to rest by t ¼ 4.

Figs. 3–5 show the same solution as Fig. 1, except the water depth is h ¼ 8; 4; 2 respectively. We also plot the infinite-

depth solution as a dashed line. The gradual change in the finite-depth solution from the infinite-depth solution is

apparent in these figures, although even for h ¼ 2 the infinite-depth solution is a good approximation.

We now consider comparison with the shallow-water solution. Fig. 6 shows the solution for depth h ¼ 0:02,
calculated by the finite-depth and shallow-depth theory for the symmetric initial displacement, and Fig. 7 shows the

equivalent solution for the nonsymmetric initial displacement. The plate motion is significantly different from the

infinite-depth solution shown in Figs. 1 and 2. It is also clear that the plate motion decays much more slowly in the case

when the water depth is shallow.

Figs. 8 and 9 show the evolution of the plate displacement for the symmetric initial displacement for depths h ¼ 0:04
and 0.1 (remember that the depth is still a parameter in the shallow-depth approximation). As the water depth increases

we expect that the shallow water approximation should become less accurate, and this can be seen in the figures.

However, the shallow water approximation is still working well for a depth of h ¼ 0:1. It is also clear that, as the water

depth is increased, the plate motion decays more rapidly.
8. Summary

We have presented three solution methods to calculate the motion of a floating two-dimensional plate, which is given

some initial displacement and released from rest. The first solution method is based on the generalized eigenfunction

expansion and it is valid for all depths. The second is based on the Fourier transformation and subsequent conversion

of the equations to an integral equation. This is also valid for all depths, but the numerical solution is only calculated

for infinite depth. The third method is a shallow-depth approximation. We presented numerical solutions which show

good agreement, as expected in the appropriate depth regimes, therefore providing benchmark solutions. We also

investigate the range of depths for which the approximations of infinite and finite water depth are valid.
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